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Love wave trainsLove wave trains

rotation rate – transverse acceleration

Synthetic calculations 
with using MINEOS

Bench Marking with 
HPSYNA
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Free oscillations induced Free oscillations induced 
from rotational motions from rotational motions 

Tohoku M9
(2011)

Chile M8.8
(2010)

Samoa  M8.2
(2009)
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Standing waves for the Standing waves for the 
Tohoku-Oki event.Tohoku-Oki event.
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Source parameters Source parameters 
sensitivitysensitivity

 The misfit is similar for all the source inversion parameters

(~35% for f<1.75 , ~ 60% f>1.75 mHz)

 Same observations hold for the rotational component with similar 
misfit values
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Spheroidal modes in the Spheroidal modes in the 
torsional spectra?torsional spectra?

Deviations from
SNREI

Chile                                                       
                                                                             Tohoku
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Strain-Rotation couplingStrain-Rotation coupling

Martin
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Coriolis coupling between Coriolis coupling between 
S and T modesS and T modes

Deviations from
SNREI

EllipticityEllipticity
RotationRotation
(Coriolis)(Coriolis) 3D3D  Modes are no more 

orthogonal
 Coupling and splitting
 eg. S modes in the 

horizontal component
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How to do that?How to do that?

Higher Order Perturbations Theory  (HOPT)
Éric Clévéde, Philippe Lognonné

➢Alows synthetic seismograms with a wide variety of 3D earth models, The 
perturbation starts frorm an anelastic non rotating earth.

➢The spectrum of an anelastic , dispersive and rotating earth does not 
depend on the direction of rotation.

➢

➢Compute the interaction matrices 
➢Use legendre transform to compute kernels for the 3D structure
➢Forbineus rule (no selection rules)
➢Inherently take into account focussing and defoccusing effects

The coplping effects are strongly controled by the Q ratio of interacting 
modes
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✔ Spectra calculations from 1.6 to 3.2 mHz and comparison with 
data (coriolis Coupling band)

✔ Taking into accoun the effects individualy to cuantify how do they affect each 

obserbable 

✔ Q calculation of the coupled modes .

✔ Spliting comparative synthetic study.

✔ Evaluate the sensitivity of the obserbable to different earth 
models

✔ Extend synthetic calculations to the other components of 
rotations.

The plan ...The plan ...
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The first attempt ...The first attempt ...

Vertical component 10 hours siemogram including 
cross coupling for fundamental modes between 0 
and 1.5 mHz.... to be continue

 Format used for the inputs is .ah (Iris)... problematic 
convertion to and from any other thing...
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Thank  you all!

Any comment, 
suggestion(clue) or 

question is welcomed
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 36 hr time 
window

 Comparison 
with WET

 Hanning taper

Magnitude 9.1 – Tohoku-Oki, March 11 2011 
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Periods < 54 min,

Amplitudes < 2-3  cm  
for M9

Observable weeks to 
months after great 
earthquakes.

Source:  http://icb.u-bourgogne.fr/nano/MANAPI/saviot/terre/index.en.html

Earth‘s free Earth‘s free 
oscillationsoscillations

Toroidal mode , n = 0 . l= 5, |m| = 4  
period = 18 min
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ConclusionsConclusions

 Ring laser technology has advanced to a sensitivity level that 
provides an interesting complement to classical seismological 
instrumentation.

 Ground rotations measurements can be used to put additional 
constraints on earthquake source properties with sensitivities 
equivalent to translational measurements.

 Coriolis Coupling between T-S fundamental modes is observed.

 Fundamental differences in the attenuation of the coupled modes is 
observed with respect to classical observations. 

 Observations should be extended to other rotational motion 
components (tilts, as suggested by Widmer/Scniedrig 2009).
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Free Oscillations Free Oscillations 
from horizontal from horizontal 
motionsmotions

Widmer et al., BSSA, 2009
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